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Laboratory analyses in a variety of contexts may result in left- and interval-censored measurements.
We develop and evaluate a maximum likelihood approach to linear regression analysis in this setting
and compare this approach to commonly used simple substitution methods. We explore via
simulation the impact on bias and power of censoring fraction and sample size in a range of settings.
The maximum likelihood approach represents only a moderate increase in power, but we show that
the bias in substitution estimates may be substantial.
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1. Introduction

The statistical practices of chemists are designed to protect against mis-identifying a
sample compound and falsely reporting a detectable concentration. In environmental
assessment, trace amounts of contaminants of concern are thus often reported by the
laboratory as ‘‘non-detects’’ or ‘‘trace’’, in which case the data may be left- and interval-
censored respectively. Samples below the ‘‘non-detect’’ threshold have contaminant
levels which are regarded as being below the limits of detection and *‘trace’” samples have
levels that are above the limit of detection, but below the quantifiable limit. The type of
censoring encountered in this setting is called Type I censoring: the censoring thresholds
(“‘non-detect’’ or ‘‘trace’’) are fixed and the number of censored observations is random.
We consider here the problem of linear regression modeling in the setting where the
outcome of interest, Y, is subject to Type I left- and interval-censoring.

The analysis of singly censored response observations has received attention in the bio-
statistical (e.g., in the context of survival analysis) and in the environmental literature.
Useful summaries of approaches in environmental statistics may be found in Akritas et al.
(1994) and Gilbert (1995). The literature on linear regression with censored data has
focussed primarily on the setting of right-censored (typically survival) outcomes and
random censoring mechanisms, an assumption that is not met in our setting, where the
censoring thresholds may, for instance, be constant. Buckley and James (1979) proposed
an approach where the (right) censored values are replaced by a weighted average of the
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uncensored observations, with weights being derived from a non-parametric estimate of the
error distribution function. Schmee and Hahn (1979) considered an iterative least squares
approach, assuming Gaussian errors. Aitkin (1981) linked this approach to maximum
likelihood and use of the EM algorithm (Dempster et al., 1977). Ireson and Rao (1985)
considered non-parametric estimation of the slope in a simple linear regression model in the
presence of random censoring. Ritov (1990) considered an estimating equation approach
for right-censored outcomes that is a modification of M-estimation for regression. Wei and
Tanner (1991) developed a multiple imputation approach to regression with right-censored
outcomes where, again, the censoring mechanism is assumed to be random. Akritas et al.
(1995) developed an extension of Theil-Sen estimation in the context of right censoring of
both Y and a single covariate X. Akritas (1996) considered an approach where least squares
is used to to fit a polynomial regression model with a single covariate X using a non-
parametric estimate of the conditional expectation of ¥, given X, based on a window around
each observed X. Zhang and Li (1996) considered the setting where Y is subject to left- and
right-censoring and extended the estimating equation approach of Ritov (1990).

In this paper, we extend the work of Aitkin (1981) to develop a maximum likelihood
approach for the setting which includes Type I left- and interval-censoring. We evaluate
and compare this approach with once-off substitution of censored values (commonly used
in practice in environmental analyzes) through a practical example and by simulation. In
Section 2 we develop the methodology for estimating regression parameters in the
presence of interval- and left-censored data, Y. Section 3 contains a practical example and
we evaluate and compare the developed procedures in a simulation study in Section 4.
Section 5 contains a discussion.

2. Estimation
2.1 Maximum likelihood estimation

We assume that the data consist of observations (Y, X;1,...,Xy),i = 1,2, ..., n where the
Y; may be numeric or denoted as ‘‘non-detect’” or ‘‘trace’’ in which case Y; < c; (left-
censored) or ¢;; < Y; < c¢y; (interval-censored) respectively, where ¢;; and ¢,; are known.
For notational convenience, we assume further that the data have been ordered so that the
first n; observations are‘‘non-detect’’ (and so are left-censored), the next n, observations
are ‘‘trace’’ (and so are interval-censored) and the final n; observations are numeric,
where n = n; + n, + n.
The Y; are assumed to follow a linear model, where:

k
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where z; = (y; — p;)/0, and ¢ and @ are the standard normal density and distribution
functions respectively.

It can be shown that maximization of the above likelihood with respect to f,,
j=0,1,2,... k involves solving the equations

n
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Note that this is equivalent to the least square estimators for 3; based on *‘complete”’

data y7,¥5,..., .
The maximum likelihood estimator of the residual variance is given by:
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and where u; = (¢;; — [;)/6 and v; = (cy; — 1)/ 6.
The maximum likelihood estimates may be obtained via application of the EM
algorithm. The sufficient statistics for the parameters in the case where there is no
censoring (complete data) are >, y? and >/ | x;y;,j =0,1,... k. Note that

ElYilc;; <Y, < ¢y = — 0%,
and
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The corresponding conditional expections for the case of left-censoring can be obtained
as a special case of the above expressions.

Equations (1) and (2) for the maximum likelihood solutions based on the incomplete
data are hence equivalent to those that would be obtained by replacing the censored y; and
y7,i=1,2,...,n, + n,, by their conditional expectations, given the observed data and the
current parameter estimates, until convergence.

The maximum likelihood approach also yields explicit (but cumbersome) expressions
for the components of the information matrix associated with this model, from which the
variance-covariance matrix of the parameters may be estimated.
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2.2 Midpoint substitution

A simple approach that is commonly used in analysis of censored data in environmental
settings involves replacing the censored values with a constant, such as the midpoint of the
censoring interval. The estimates of model parameters are then obtained treating the data
as if they were complete (Helsel and Hirsch, 1992; Davis, 1994; Gilbert, 1995;
Loewenherz et al., 1997). This approach has the advantage of being readily implemented
with standard software. In Sections 3 and 4 below we compare the use of midpoint
substitution to the maximum likelihood approach outlined above.

3. Example of application

In a study undertaken in Wenatchee, Washington State (Loewenherz et al., 1997) children
up to six years of age were monitored for evidence of pesticide exposure. Laboratory
metabolite level assessment was carried out on urine samples from a sample of children in
the area and the age of the children and their residential proximity to sprayed fields was
determined, among other covariates. We present below the results of a linear regression
analysis for the levels of logged dimethylthiophosphate (DMTP) in 67 children, as a
function of their age and their residential proximity to sprayed fields (within 50ft of
sprayed fields versus 50 ft and greater). These data may be obtained from the authors on
request. The DMTP measurements reflect a high degree of censoring with 49.3% of
observations being non-detects(left-censored) and a further 20.9% being recorded as
having trace levels of the metabolite (interval-censored).

Table 1 shows results of regression analysis with outcome log (DMTP) from both
simple midpoint substitution of censored values and maximum likelihood estimation. It
can be seen that the substitution approach yields smaller estimates of the coefficients for
both covariates and residual variance. However, both analyses indicate possible increase
in mean DMTP levels in children who live within 50 ft of sprayed fields (on average
approximately 77% higher than children who live further away), but provide little
evidence of a trend in DMTP levels with age. The simulation studies below confirm the
bias in the simple substitution approach and illustrate the effect of increased censoring
level on power to detect significant relationships.

Table 1. Regression analysis for Wenatchee log (DMTP).

Method Variable p SE(B) P-value 62
MLE Intercept —3.66 0.452 <0.0001 147
Proximity < 50 ft 0.570 0.338 0.092
Age (months) —0.014 0.0096 0.154
Midpoint substitution  Intercept —3.56 0.344 < 0.0001 1.06
Proximity < 50 ft 0.424 0.255 0.102

Age (months) —0.0085 0.0071 0.235
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4. Simulation study

We carried out a range of simulations in settings that are plausible for the type of data
encountered in an environmental setting such as that described above. We consider a single
continuous covariate X intended to represent proximity of residence to sprayed fields, as in
the above example, which has a positive skew distribution ( proportional to @ with mean
0.5 and range 0.07 to 1.75 (miles)). We assume that

Y =By + BiX; + ¢, i=1,2,....n

where we consider

1. Type I (fixed) censoring thresholds set so as to represent (on average) 20%, 40% and
60% censoring with (on average) equal fractions of non-detect and trace
observations,

2. Sample sizes n =150 and 100,

3. Gaussian and (location shifted) chi-square error distributions.

For each of these scenarios, we consider the results of 1000 simulations using both
maximum likelihood and a simple substitution approach, where censored observations are
replaced by the midpoint of their censoring interval. In addition, we consider parameter
estimation in the setting where information as to the non-detect threshold has not been
determined, i.e., we address the question of the loss in precision by ignoring interval
censoring information and considering all the censoring as being left-censored.

Tables 2—4 show summaries of the simulation results for the model:

Y,=-3-2X,+¢, i=12,...n
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Figure 1. Simulated data with 40% censoring.
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Table 2. Maximum likelihood estimation (midpoint substitution) with Gaussian errors.

n Censoring Power (%) Coverage (%) Bias(ﬁl) Vai'([fl) Vai([fl) 62

100 20% 63.8 (62.6) 94.5(95.2)  0.02 (—0.15) 0.79 (0.62) 0.76 (0.67) 8.92 (8.17)
40% 60.0 (58.6) 95.0 (93.2) 0.03 (—0.34) 0.83 (0.51) 0.83 (0.58) 9.09 (7.11)
60% 58.2 (55.0) 95.0 (88.9) 0.06 (—0.55) 0.91 (0.41) 0.89 (0.49) 9.06 (5.97)

50 20% 47.8 (45.8) 94.2 (94.4) 0.01 (—0.16) 1.28 (1.00) 1.13 (1.01) 8.74 (8.15)
40% 44.3 (41.8) 94.3 (95.5) 0.02 (—0.35) 1.36 (0.82) 1.22 (0.88) 8.91 (7.10)
60% 41.9 (39.5) 94.4 (93.3) 0.05 (—0.55) 1.47 (0.66) 1.33 (0.73) 8.89 (5.95)

Table 3. Maximum likelihood estimation (midpoint substitution), non-Gaussian errors.

n  Censoring Power (%) Coverage (%) Bias(p,) Var(f;) Var(p,)  &*

100 20% 70.3 (61.8) 92.3 (95.1) 0.25 (—0.16) 0.98 (0.66) 0.78 (0.66) 8.83 (8.04)
40% 66.6 (54.1) 92.9 (92.9) 031 (—0.35) 1.12 (0.61) 0.93 (0.64) 9.94 (7.85)
60% 61.3 (47.2) 93.8 (89.1) 0.36 (—0.55) 1.32 (0.56) 1.11 (0.60) 11.16 (7.38)

50 20% 54.9 (47.6) 92.3 (95.1) 0.22 (—0.18) 1.35(0.90) 1.13 (0.97) 8.56 (7.96)
40% 50.5 (38.4) 93.7 (94.7) 0.28 (—=0.37) 1.56 (0.84) 1.35 (0.94) 9.62 (7.75)
60% 43.3 (31.7) 94.1 (92.2) 0.33 (—=0.57) 1.82 (0.76) 1.62 (0.88) 10.81 (7.28)

Table 4. Maximum likelihood estimation (midpoint substitution) with Gaussian errors, left-
censoring only.

n Censoring Power (%) Coverage (%) Bias(ﬁl) Vai'(i?l) Var(ﬁl) &2

100 20% 63.1 (60.8) 94.9 (93.2) 0.06 (—0.31) 0.79 (0.49) 0.80 (0.58) 8.89 (7.09)
40% 563 (51.1) 945 (802)  0.09 (—0.71) 0.94 (0.33) 0.94 (0.41) 8.99 (5.02)
60% 45.9 (40.4) 94.7 (38.0) 0.11 (—1.12) 1.29 (0.20) 1.21 (0.25) 9.06 (3.07)

50 20% 45.6 (42.8) 94.6 (94.1) 0.13 (—=0.26) 1.27 (0.74) 1.20 (0.88) 8.76 (7.10)
40% 40.0 (34.9) 94.1 (85.3) 0.16 (—0.68) 1.51 (0.49) 1.43 (0.62) 8.89 (5.04)
60% 309 (25.7) 947 (51.6) 020 (—1.10) 1.97 (0.23) 1.83 (0.37) 8.82 (3.06)

Fig. 1 shows a simulated data set for n =100 and 40% censoring under the above model
with Gaussian errors. The correlation between Y and X in all cases is approximately — 0.2,
which is the sort of level that might be typical in the setting described in the above
example. The corresponding error variances are 9 (8) with Gaussian (chi-square) errors.
Simulations to evaluate size for the hypothesis test of zero slope indicated that both the
maximum likelihood and midpoint substitution approaches give approximately valid type
I error rates at the 5% level.

It can be seen that the estimates of 3, and ¢ using the substitution method are biased
but that the power (for testing the hypothesis H, : f; = 0) is comparable to that of the
maximum likelihood approach. The coverage of the nominal 95% confidence interval for
S, based on maximum likelihood is close to 95% for all settings and is generally superior
to that of the substitution approach, particularly for the case where all data are regarded as



Linear regression 227

left-censored (Table 4). Here, the midpoint subsitution estimates are seriously biased and
the larger variance associated with the smaller sample size (n=>50) results in better
coverage probability, although lower power.

The estimate of 5, based on the substitution method is, not surprisingly, less variable
than that based on maximum likelihood estimation. The observed variance in the slope
estimates (var(f3;)) for the maximum likelihood estimates agrees well with that based on
the information matrix (var(f,)), particularly for larger sample size. The results in Table
3, however, indicate that, with regard to bias of the slope estimate, the maximum
likelihood estimation is not robust to non-normality. Comparison of the results in Tables 2
and 4 demonstrates that there is a substantial loss in power at higher censoring levels when
information regarding the non-detect threshold is ignored (i.e., when all observations are
regarded as left-censored).

5. Discussion

We consider here linear regression analysis where the outcome variable is interval- and
left-censored with censoring thresholds that are known, but may vary across observations.
Data of this sort arise commonly in laboratory analyses of environmental exposure
samples. The software to implement the maximum likelihood methodology with multiple
covariates using Splus (Statistical Sciences, 1995) is available from the authors.

A common, easily implemented, approach to analysis of such data has been a simple
once-off replacement of the censored observations by, say, the midpoint of their censoring
interval. Our results show that, in the settings explored here, this method leads to biased
parameter estimates, but has reasonable power, relative to maximum likelihood
estimation. The existence of bias using substitution methods has been evaluated in
other settings, see, e.g., El-Shaarawi and Esterby (1992) and Berthouex and Brown (1994).
For exploratory analyses where identification of effects rather than estimation of effect
size is the focus, this approach may be adequate. The maximum likelihood estimates are
less subject to bias, but more variable than those resulting from simple substitution.

We further explored the impact of censoring level and sample size on parameter
estimation. In the settings considered in our simulation, the reduction in power with
increasing censoring fraction is surprisingly slow. As is to be expected, however, the effect
on power of reduced sample size is substantial. The approach developed here will also
prove valuable in study design and sample size determination. If the anticipated effect
sizes and censoring fractions are specified, simulations under the assumed model will
indicate the sample size needed to attain desired power or, alternatively, the censoring
fraction compatible with desired power for given sample size.

Determination of the ‘‘non-detect’” threshold represents a more time-consuming
calibration problem and hence may not be undertaken in laboratory practice. Our results
indicate that, particularly with high overall censoring levels, there is considerable loss in
power when determination of this threshold is neglected and the outcome data are all left-
censored.

The maximum likelihood approach does not appear to be robust to gross deviations
from the normality assumption and it is hence particularly important that an appropriate
transformation of the data be chosen. Use of a semi-parametric approach in this setting is
an attractive alternative. Buckley and James (1979) suggested an iterative approach where
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a non-parametric estimate of the error distribution function is obtained and the censored
residuals are replaced by the weighted average of the uncensored residuals that lie in the
same censoring interval, with the weights being obtained from the estimated distribution
function. Turnbull (1974, 1976) and Frydman (1994) propose self-consistency algorithms
for non-parametric estimation of the distribution function in settings that would
accomodate left- and interval-censored data.

A glance at Fig. 1, however, will reveal a difficulty with application of this approach
directly in our setting. Because of the nature of the censoring mechanism, the censored
residuals are likely to be (relatively) large and negative whereas the uncensored residuals
are likely to be large and positive. The uneven weight distribution will tend to bias the
coefficient estimators. Some sort of symmetry assumption might be imposed to address
this problem. Alternatively, the censored residuals might be replaced by estimates of their
conditional expected values, based directly on the empirical distribution function and
hence only indirectly on the uncensored residuals. Variance estimation in this setting
would appear more challenging. In any event, estimation of a distribution function non-
parametrically in the presence of substantial censoring appears a challenging and perhaps
intractable problem.

In conclusion, we have developed and assessed a simple method to carry out multiple
linear regression in the presence of left- and interval-censored outcome data. When the
underlying Gaussian assumption is valid, the approach represents an improvement in
terms of power and bias relative to commonly used once-off substitution approaches.
Further work is needed to develop methods that are robust to the Gaussian assumption. In
addition, we note that there are many aspects to the determination of laboratory assays that
present interesting statistical questions. As noted by Akritas et al. (1994): ‘... until
quantitative scientists and statisticians agree on the importance of seeing all the data,
censoring will plague environmental data sets’’.
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